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REGENERATIVE SIMULATION OF HARRIS RECURRENT MARKOV CHAINS

Peter W. Glynn

1. Introduction

In recent years, a substantial amount of research effort has been

devoted to development of efficient techniques for statistical

analysis of simulation output. When the stochastic system being simu-

lated enjoys regenerative structure, the regenerative property can be

exploited to produce a methodology which possesses many attractive

properties. Such an approach has proven useful in the steady-state

simulation problem (CRANE and IGLEHART (1974), FISHMAN (1973)),

quantile estimation (IGLEHART (1976)), and selection of the "best"

system (IGLEHART (1977)). The applicability of these procedures has

been limited, however, by the need to construct regeneration times for

the process under study.

In this chapter, we will extend the regenerative method of

simulation output analysis to the class of Harris recurrent Markov

chains. These chains are a natural setting for an extension of this

kind, since it can be shown that every generalized semi-Markov process

(GSMP) corresponds to a certain Markov chain taking values in a

complete, separable metric space. As WHITT (1980) has pointed out,

GSMPs are a mathematical formulization of the general discrete-event

simulation. It is shown in [12] that if the Markov chain correspond-

ing to the GSMP is well-behaved from a simulation standpoint, then the

chain must in fact be Harris recurrent. Thus, the class of Harris

chains contains the class of well-behaved discrete-event simulations.

1j



In Section 2, we will briefly describe an embedding for Harris

chains that provides a weakly regenerative environment (a weakly

regenerative process generalizes the concept of regenerative process

in the sense that the sequence of tours may be m-dependent). Section

3 develops an algorithm , very similar to that of the regenerative

method, for statistical analysis of the steady-state simulation

problem. Section 4 concerns a refinement of the algorithm for the

case where the embedding is, in fact, regenerative.

For a given Harris chain, there are, in general, many ways of

embedding the process in a weakly regenerative environment. In

Section 5, we investigate the existence of "optimal- embeddings.

Section 6 concerns application of the ideas of Sections 2 through 5 to

the "passage time" problem for Harris chains. Recently, there has

been substantial interest in passage time problems for networks of

queues; see, for example, IGLEHART and SHEDLER (1980). We consider

this concept in the Markov chain setting, and prove that one can

reduce the passage time problem for Harris chains to the situation

covered in Secions 2 through 5. Finally, in Secion 7, we consider a

simple vector-valued storage process operating in discrete time, and

prove Harris recurrence. This storage process provides examples of

chains which can be made regenerative only via an embedding of some

kind (such as that developed in Sections 2 and 3). Thus, the

techniques considered here do legitimately extend the classical

regenerative method. -
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2. Harris Recurrent Markov Chains

Let E be a complete, separable metric space with E its

associated Borel sets. Given a probability transition kernel P and

a probability 4 on (E,E), one can construct a probability measure

P on the product space Q = E x E x ... , equipped with product

a-field F - E x E x .. , such that

(2.1) P {X0 c A0, X1 c A1 , ..., Xn c An}

f 5 1 (dx 0 ) f P(Xo, dx 1) ... f P(Xni, dx )
0 1 A n

for Ai c E, where Xi(M) - wi is the projection onto the ith

coordinate of Q. The process {Xn} is called the Markov chain

associated with kernel P and initial probability 4. We refer the

reader to OREY (1971) for notation and additional properties.

The kernel P is said to be a Harris kernel if there exists a

probability 0 on (E,E), a positive integer m, a non-negative

E-measurable function X(x), and a set A c E such that:

(2.2) i) pm(x,-) > X(x) (.), for all x c E,

ii) inf{k(x): x c A) - X > 0.

iii) P (SA < } for all probabilities 4 on (E,E),

where SA  inf{n > 0: Xn c A).

iv) Px(Xn= c A infinitely often) - I for all x c A.

The set of all pairs (O,X) satisfying (2.2) for some A will be

denoted by Mm. The measure 0 will be referred to as a splitting
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measure. Finally, any chain for which its kernel is Harris will be

called Harris recurrent.

It can be shown that the Harris condition (2.2) is equivalent to

requiring existence of a a-finite measure v such that v(A) > 0

implies

(2.3) Px{Xn c A infinitely often} 1 1

for all x c E (see Section 4, [121). All Harris chains -ossess a

unique a-finite invariant measure n. This measure has the property

that n(A) > 0 if and only if (2.3) holds for every x c E (see

Theorem 2.7, REVUZ (1975)). We will use these equivalent formulatibns

in our analysis of the "passage time" problem in Section 6.

Harris chains are of great importance in simulation. As WHITT

(1980) has indicated, a reasonable mathematical formalization of the

general discrete-event simulaiton is the class of generalized semi-

Markov processes. As is well-known, such processes can be regarded as

Markov chains taking values in a complete, separable metric space (see

(251 for a discussion). On the other hand, any chain for which the

associated steady-state simulation problem is well-posed must neces-

sarily be Harris recurrent (see [12], Proposition 3.8 for definition

and results). Hence, the study of well-behaved discrete-event simula-

tions leads naturally to the study of Harris chains.

Any Harris chain can be embedded in a weakly regenerative

environment (see Section 4 of [12] for definitions and details). The

construction of such an environment proceeds as follows.
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Under our topological assumptions on (E,E), there exist regular

conditional distributions Px(y,dz) such that

I P x(B) - f [f IB(z,y) P x(y,dz)] Pm(x,dY)

for all B c Em, the =n-fold product a-field of E(Px(-) is the

probability on (0,F) associated with initial distribution

concentrated at x). Assume that Mm is non-empty, and let

( ,%) c M * Put E m -Em x {0,1} and let E Mbe the corresponding

Borel a-field. For x c E and B c Em, define the kernel Pby

the formiula

(2.4) P~,B (0))

- l-X(X)) f [fI 1Bv~) P (u,dv)] Q(x,du)

P(x, B >c (1))

=X(X)) f [f I B(v,u) P X(u,dv)] O(du)

where Q(x, du) is defined by the relation

P m(x,-) '. X(x) *C.) + (I - X(x)) Q(x,.)

This kernel defines, for each x c E, a probability x on

E x E x ... as follows:
m m
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(2.5) Px(YI c Bit .... Y Bn c B n n

- f P(x, dy1 x (il)) f '(ynl(m), dy n x {'n))

B1  n

Here, (Y6) is the ith coordinate projecti a on E x Em x

where Yi is the m-vector (Yi(1) .... Yi(m)). Finally, let

E* ; Ej x A, with A as in (2.2), and let P be theE*-j 0 ' L

probability on E* x Em x Em x ... given by

(2.6) P ((Y 0 (0), ... , Y0(k)) c B0 ; N - k; (Yl' 81, "'' Yn' n) c B 1)

-r P {(X0 , .... Xk) c dy0 ; SA - k}

B0

x P YO(k) f(Y1,61,....Y n,6) c BI)

wt-re Y0 - (Y0 (0), " ", Y0 (N)) is the ccordinate projection on E*,

and SA - inf{k > 0: Xk c A). We now define the random variables

{Xn} by the relation

xk .YO(k); k < N

(2.7) XN+km+j = Yk+l(j); I < j < m

The process (X n} records the consecutive components of the Yj's.

It is not difficult to show that {Xn} has marginal distribution

P on (r?,F) and hence (2.7) acts as an embedding of {X n  within

the process Y0, (YI'6 1 ) " " (see Proposition 4.10, [12J).

---- _x, II II I I I I - I I I I ... .... I



The process Y0 9 (YI'6 1 )' " " is weakly regenerative of order I

with respect to the random times {T : j > 2), where T 0  0 and

Tn = inf(k > T l} .

n n-i

Basically, this means that the random "tours"

{(Tk+l-Tk ,  r (gk lYl1 ) k > 2}
k'(Tk* k Tk- 1,IT k+1-1 1

are identically distributed and 1-dependent (i.e., tours k and j

are independent for Ik-jI > 1); see Section 4 of [12] for a more

precise description of the result. One can therefore regard the prob-

ability space constructed above as a weak regenerative embedding of

the chain {Xn).

Before turning to a simulation implementation of the above

embedding, let us recall that we can decompose Pm(x,.) into its

-singular and 0-absolutely continuous parts, yielding

Pm(x,B) f J h(x,y) 0(dy) + Pm(x,B)

B

where P (x,.) is the -singular part of the decomposition. Of

course, by (2.2)(i), h(x,y) > K(x) for 0 a.e. y. We can now state

the simulation implementation of the above weak regenerative embed-

ding.

1. Set TO + 0, k , 0, j + 1.

2. Generate X0  with di3tribution .

3. If Xk c A, go to 5.
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4. Generate X+l from the distribution P(Xk,.). Set k +- k+1.

Go to 3.

5. Set Z * Xk, X + k.

6. Generate Xk+ from the distribution P(Xk,.). Set k + k+1.

7. If k < I+m, go to 6.

8. If h(Z,Xk) - 0, go to 5.

9. Generate a random variable U uniform on [0,11.

10. If X(Z)/h(Z,Xk) < U, go to 5.

11. Set T+ 1+1, j + J+1.

The random times {T } produces by this algorithm are weak

regeneration times for the process {Xn}. It should be pointed out

that each random variable in the above algorithm must be generated

independently of all other random variables (modulo the fact that the

distributions involved are correlated).

The above algorithm incorporates one major modification to the

embedding given by (2.3) through (2.7), namely the use of "acceptance-

rejection" to calculate those times at which (Xn} is distributed

according to 4(.). Let U be a uniform variate on [0,1], and

observe that

PX((XI,..., X m ) c B; h(x, X ) > 0; U < X(x)/h(x, Xm)J

- x (I P {U < X(x)/h(x,Xm)IX, xm )

a E x(IA X(x)/h(x,XM)}

8



where

A^- (Xi ... x ) c B; h(x, Xm) > 0)

The above expression can be simplified as

Ex{Px(A Xm} X(x)/h(x, Xm)}

SEx( IB(v,Xm) Px(XM,dv) X(x)/h(x, Xm); h(x,X m) > O}

- X(x) f [f IB(V,U) Px(u,dv)] 4(du)

which is, we observe, half of relation (2.3). The other half of (2.3)

is equally easy to verify, and thus we see that generation of the

additional variable U allows us to avoid explicit generation of

random vectors with distribution Px(u, dv). The term "acceptance-

rejection" derives from the interpretation of U as being a variable

with indicates when to "accept" a variate as having come from the

distribution 4(-).

3. Confidence Interval Estimation for the Steady-State Simulation

Problem

Every Harris recurrent chain {Xn} with invariant probability

n has the property that

n

(3.1) 1 f(Xk)/n n f f f(y) n(dy)

k-O



Px a.s. for all x c E, provided nifI < (see Proposition 3.8 of

[12]). Given that {Xn} is the output of a simulation, a simulator

is often interested in obtaining point estimates and confidence

intervals for the parameter if; this is known as the steady-state

simulation problem. We will now show that the weak regenerative

embedding of Section 2 can be used to advantage in obtaining a

sclution to the above problem.

The strong law (3.1) immediately provides a strongly consistent

point estimator for if. Confidence interval estimation depends on a

central limit theorem (CLT) for the summands

Ai+1 -

Y (f) 
T 1

k-T1

i Y (1)

and f(Xk) f(Xk) - f

(3.2) PROPOSITION. Assuming that a (y(f)) <

; -1
(33)-1/2 2

(3.3) ( f(Xk)) -> N(O. or)
k-T 

2
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where -> denotes weak convergence, N(O, a2 ) is a normal

distribution with mean 0 and variance a2, and

2 ()2+11 ((y 2( +E I(Y 2(M Y 3(M))

Proof. The sequence {Yj(f); i > 2} is a sequence of identically

distributed 1-dependent random variables, so we may apply Theorem 20.1

of BILLINGSLEY (1968) to obtain (3.3) for a12 > 0. On the other hand,

if a1 2 0, then it is easily computed that the variance of

T -1
a1/2(f

(3.4) nX~

converges to 0, and hence (3.4) converges to zero in probability.

This suggests the following simulation algorithm.

1. Simulate {Xk} to time T n 2 '

2. Compute Y2(f), 't2, Yn+1(f) 'Ct+l.

3. Compute



n+1 n+lr n I Yk (f ) / I r
k-2 k-2

2 2 /n - 2r + 2n n k l f l  n  I T-kk-2 k 2 k-2

n nc n " k 2 Y(f) Y k+lIf)/n - r n I'[ Tk Yk+lIf)/n

kM2k2 nk

- + ;

k.2 k-2

2
V s +2cn n n

4. Let 4(x) = P{(N(0,1) < x}, put z8 - -1(1-&/2), and set

112 - 1/2

Ln r n z6 v /2// n nl/

Rn r n zS v// n n

where

n+1

I Tk/n
" 2

We claim that the random interval [Ln, Rn] is an approxi-

mate 100(1-6)% confidence interval for r(f), provided a2 > 0. This

follows from Proposition 3.2 and the "converging together" lemma

(Theorem 4.1, [2]), together with the observation that ET2 <

when {Xn} possesses an invariant probability (see Proposition

4.15, (121).
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The above simulation algorithm requires that the time horizon of

the simulation be random, namely Tn+ 2  time units. The following

algorithm deals with fixed length simulations.

1. Simulate XO, X1,., Xn .

2. Let I(n) - max{k: Tk< n}, and compute t I v 1A

3. Set

1/2 -1/2 1/2
L n  r I(n) -6 VI(n) /.(n) n

1/2 -1/2 1/2
Rn r rk(n) + z 1 V(n) / (n) n

(if I(n) < 2, report L = R = n f(X k)/n). Again, the

interval [Ln,Rn] is an approximate 100(1-6)% confidence

interval for nf; this follows from the asymptotic validity of

the first interval, application of the random time change theorem

(Theorem 17.1, [2]), and another application of the "converging

together" lemma.

4. Regenerative Embeddings for a Special Class of Harris Chains

Let (Xn} be a Harris chain such that n is non-empty.

Then, several simplifications of Sections 2 and 3 are possible.

Let P be the kernel, corresponding to (0,%) c M, defined in

Section 2, and let (Xo,5 0 ), (X1 ,5) ... be the coordinate

projections on E1 x E1 x .... Then, take P as the probability on

E x EI x ... defined by

13



P(X 0 c BO, ... , Xn  Bn, 60 = i, 6n 
=

n

- f 4(dx 0 x (O f P(xo, dx1 x {il} 1 . f P(xn-l , dx, {i n)
B0  B 1  B n

where B0 c .... Ba c E and

(Bo 0x (0)) - j(B0)

It is easily verified that (Xn} has marginal distribution P.

Furthermore, if we put To  0,

Tn  inf{k > T nI: 8k =}

the process {Xn} is regenerative with respect to the random times

{Tj} (i.e., weakly regenerative of order 0). The proof of this

result is similar to that of Proposition 4.11 of [12].

The simulation algorithm of Section 2 may be appropriately

simplified:

I. Set To + 0, k + 0, j *- 1.

2. Generate X0  with distribution 1.

3. Set Z 4- Xk.

4. Generate Xk+ from the distribution P(Xk,.). Set k + k+1.

5. If h(Z, Xk) - 0, go to 3.

6. Generate a random variable U uniform on [0,11.

7. If X(Z)/h(Z,Xk) < U, go to 3.

8. Set Tj 4- k, j + J+1.

14



Assume f or the remainder of this section that the invariant

measure nt is a probability. To obtain a confidence interval for

,tf, we consider the sequences

Ti+1-

Y (f) k I~ T (k

ri -Y 1(I)

For a simulation on the random time interval (0, 1, *.,Tn+I}, we

proceed as follows:

1. Compute Y I(f), 'rYnf Tn

2. Compute

n n
r n Ykf) k

k 1 k-1

2 ii+1 2 n+1 2 n 2
-n YkCf)/n- 2r n I k Y f/ + r -r tk/n
k=2 k 2 k 2

Set

- 1/2
L n= rj() -z6s n/T nn

- 1/2
'n - t(n)+ 6snrn n

where

15



n

n 3" Tk •/n
k-I

Then, [Ln,Rn] is an approximate 100(1-6)% confidence interval for

itf, provided (ll and 0 < EL Y2(fp2 <

For a fixed length simulation, let 1(n) - max{k: Tk < n), and

use the interval [Ln,Rn] given by

-- 1/2 1/2

n r(n) Z6 5(n) t(n) n

-/2 1/2
Rn r1(n) + z1S (n)/ 1(n)

The proofs of thse CLT's follow from the fact that the constant al

of Proposition 3.2 reduces to

2 2a, = E Y 2( f)

in the regenerative case.

Given the important role that E Y2 (f) plays in the central

limit problem, it is convenient to reduce the question of finiteness

of this parameter to one involving parameters defined on the original

{Xn) process alone.

(4.1) PROPOSITION. Assume that _ is non-empty and that (0,k)

and A are aa in (2.2). with a 1. Ton, 3 ((2( jfpf

provided that:

1) itjf2r < -, r >

16



ii) E %A{R log R2I < - > I

where R, inf{n> 1: Xn c A), %A(-) x(. n A)/%(A), and

1/r + 1/s > 1.

Proof. By condition (2.2)(i) and (ii),

XO(.) < f e(x,.) nA(dx)

and hence

T3-1 T1-1

T1 - 2
E I=X{ E { E f I lf(Xk

Sk-T 2  XT2 k 0

T-1

1- 1 2 ~d

< ff E y{ kf If(Xk)} 2  A(dx ) e(x,dy)/Xk.0

T -1E{ E { kO 1I f(Xk)1/

A 2

T1- T2-1
E it k- IfXk)1121X _( " oA kO 1 (xk)I1/X

where T inf{k > 2: 6k i}. Let Ro - 0, R - inf{k > R_:

Xk c A}. Clearly, the last term above can be bounded by

17



n-(42 Rn -1 I(4.2)n{( 1 If(Xk)I)2 ; 6R +1 1 1, 6Rj+1- 6ij, J _ n}I/An 2 i-1 A k-On

Sn- 1 n-I 2
I I E 4fn+1) I V 2 ; < n/X

n-2 i-I A-0 + i

where we have used the inequality

n 2 n 2Sxi)2<n X i

in the second step and V, denotes the quantity

X R -1 (k~
k-R1

For the individual term in the above iterated sum, we have, by

Holder's inequality, a bound of

n 2p I/p1/q,
(4.3) E it (V2 } + - 6 j < n}

I-O A Aij'

where I/p + I/q - 1 and p > 1. A simple "geometric trial" argument

(see Proposition 4.11, [12] for an example) shows that we can bound

* the 6Rj+1 terms by (1-X)(n-2)/q .  On the other hand, if we use the

18



fact that nA is an invariant probability for the chain {XRn}

(see [201, p. 32), then we obtain

{V2)-E{ {V 2p))) - E {V0p
A A XR ~n-I 0"

Combining these bounds with (4.3), and substituting in (4.2), gives

the bound

n3 E 02p}/P (l-k)(n-l)/q/.

2 n EEn {V

so that E~ 0 2Y2(f) < -, provided E nA{ . Duplicating the

reasoning of COGBURN (1970), p. 506, shows that conditions 4.1(i),

(ii) suffice to guarantee that E V 2p <

nA0

Proposition 4.1 shows that if f is a bounded function, then the

central limit theorem holds if E < for some 8 > 0.
itA 1

The confidence intervals introduced thus far in this section make

explicit use of the regenerative structure of the process {Xn}.

Another approach to the confidence interval problem is to treat the

sequence {f(Xn)} as a stationary process. The expectation is that

(4.4) n- /( f(Xk) - nnf) -> N(0, a 2)

19



where

(4.5) a2 - E {(X 2 + 2 E E (X
2 n +2 E )f(kk- 1

A confidence interval procedure can then be obtained by using the CLT

2
(4.4), in conjunction with a consistent estimator of a2 ; see FISHMAN

2

(1978) for a description of procedures based on this idea.

We can now apply a theorem from regenerative process theory to

determine conditions under which statements (4.4) and (4.5) are

correct. Suppose that the series defined by (4.5) converges

absolutely. Then, (4.4) and (4.5) hold, provided E7A R1+& < - and

Enf(X)16+, < -, for some 5 > 0; see Proposition 7.6 of [11], and use

a "geometric trial" argument to prove that E R 3+6 < - implies that
nA

that E <

5. Optimal Splitting Measures

Our development in Sections 2 through 4 shows that Harris chains

can be embedded in a weakly regenerative environment. Furthermore, a

special class of Harris chains can, in fact be made regenetative. We

have seen that the regenerative structure can be used to advantage in

constructing confidence intervals for the steady-state simulation

problem.

However, this structure can be useful in analyzing a number of

other simulation related questions. Procedures that make heavy use of

regenerative structure have been developed for quantile estimation

20



(IGLEHART (1976)), extreme values (IGLEHART (1977)), sequential

stopping rules for simulation (LAVENBERG and SAUER (1977)), and selec-

tion of the "best" system (RUBINSTEIN (1980)). Given that a regenera-

tive procedure is adopted for handling a given problem, a simulator

often has a choice between two or more sequences of regeneration times

for the system under study. The concensus among simulators is that

one should use the regenerative sequence which minimizes the expected

time between regenerations (e.g. [101).

In this section, we will therefore consider problems associated

with construction of a splitting measure which gives rise to the

maximal number of regenerations; such a measure will be called

optimal.

Let {Xn) be a Harris chain possessing an invariant proba-

bility ir, and suppose M1 is non-empty. Then, {(Xn, 5 ): n > 0)

is a regenerative process with E P < - (Proposition 4.15, [12]),

and hence, by the strong law for regenerative processes (Theorem 3.1,

[11])

(5.1) I /n - c P a.s.

where c is a constant yet to be determined. Note that the quantity

on the left-hand side of (5.1) is the number of regenerations over the

first n time units. Applying bounded convergence to (5.1) shows

that c is given by

21



n
(5.2) c im kI P(&k- 11/n

By the Markov property,

P { k -8 k } - E (P {Xk - 1}} - E {X(Xk_)} = E {X(Xk 1 )} .

Hence, by applying bounded convergence to (3.1), (5.2) implies that

n-1

c - iia 1 E X(Xk_l)/n
n+ kO k LI

= f X(x) n(dx)

Before proceeding, we point out that if (X,) satisfies (2.2)(i)

with m = 1, and if f X(x) n(dx) > 0, then there automatically exists

A such that (2.2)(ii) through (iv) are satisfied (see Proposition

4.3, [121), and thus (,x) C mi.

(5.3) THEOREM. There exists a pair (*,X) c MI which maximizes

f xCx) i(dx)

over all pairs (*,X) c MI.

Proof. Since X(x) < 1, it must be that

s - sup{f X(x) n(dx): there exists with (4,X) c M I}

22



is less than or equal to I. Since the problem is trivial if M

is empty, we may assume that there exists a sequence (skk) c MI

such that

Xk = f k(x) k (dx)

is increasing to s. Now, observe that

n(B) - f P(x,B) n(dx) > f k(x) s(B) i(dx) = k(B)

There exists p such that for n > p, kn > s/2, and thus, for

n > p,

(5.4) n (B) < n(B)/% n < t__ (B)/s

We now recall that n is a probability on the Borel sets of a

complete, separable metric space, and hence n is a tight measure

(Theorem 1.4, (21). Thus, for each E > 0, there exists an E-compact

set K such that n(K ) > 1-c. Letting Kc denote the set comple-

ment of K., we see, by (5.4) that

__c)< 2nK)s< 2

for n > p, and hence On(KE) > 1-20ls for n > p, proving that

{4n; n > 1) is a tight family of probability measures. Then, by

Prohorov's theorem ([21, p. 35-41), the family { n; n > 1) is

sequentially compact. Hence, there exists a subsequence {nk} such

that

23
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(5.5) rL - >

where $ is a probability on (E,E). But (nk, X nk) c Mi, so that

P(x,B) > X n(x) nk(B)

for all k and this implies that

(5.6) P(x,B) > i--- Xnk(x) nk (B) > Ti--mk (X) lim snk(B)

Let X(x) be the E-measurable function lim % (x), and observe that

(5.6) implies that

(5.7) P(x,B) > X(x) lim $ n(B)

for B c E. In particular, (5.7) holds for all open sets G c E, and

thus

(5.8) P(x,G) > X(x) li_m n (G) > (x) O(G)

the last inequality by the weak convergence relation (5.5) (see [2),

p. 12). For a fixed x, let v(.) be the signed mesure P(x,.) -

X(x)$(-). Applying Hahn's decomposition to v (ROYDEN (1968)) allows

one to write

v+
V V +- V
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where v+ , v- are mutually singular non-negative finite measures.

The measures v+  and v- are outer regular (see p. 402, BREIMAN

(1968)) and therefore, given B c E, there exist sequences of open

1 2 1 2
sets G . such that B = B - CG, andset G ,.j' ~ J'

+ + I
v+(B) = lim v (G )

1 -2

v-(B) = lim v (G ).

Let G= G G2 , and observe that B- G., so3 J J

v+(B) < lim v (G.) < lim +(G ) = + (B)

v-(B) < lim v-(G )< lim v(G 2 v-(B)

Hence, since the Gj are open, (5.8) implies that

v(B) = lim v(Gj) > 0

and thus v is a non-negative measure. By the remark preceding

Theorem 5.3, this proves that (X, ) c 1. On the other hand, using

the fact that X(x) < 1 allows us to apply Fatou's lemma to prove

that

s - if (x) (dx) < f -k n (x) n(dx) = f X(x) n(dx)nk nk

ccacluding the proof of the theorem. I
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Thus, there exists a splitting measure 0 which is optimal over

!I" Unfortunately, the above existence proof is non-constructive;

furthermore, the measure n is, in general, unknown to a simulator,

and hence can not be calculated prior to initiating the

simulation. However, under reasonably general conditions, one can

find a sub-optimal splitting measure 0 which is optimal in a certain

"maxi-min" sense. Let

T(A) - {4: i is a probability on (E,E), 4(A) = 1 for A c E ,

and consider the maxi-min problem,

(5.9) max min f k(x) 4 (dx)

(X,() C M, c F(A)

Given that n is unknown, this problem amounts to maximizing with

respect to the "worst" possible distribution of it over A. By

letting 4 range over the "point mass" probabilities on A, we see

that (5.9) is equivalent to

(5.10) max inf X(x)

(X,4) c M1 x c A

By (2.2)(ii), it is clear that there exist feasible solutions (X,$)

to (5.10), with positive objective value, for certain subsets A.

So simplify the analysis of (5.10), we re-write it in terms of

X(4(.) as follows:
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(5.11) max r(E)

subject to P(x,-) > T(.) for x c A. To retrieve ( , ), set

X - t(E), (.) = ().

(5.12) PROPOSITION. If n(A) > 0, there exists a measure % which

solves (5.11).

Proof. Note that for any feasible T,

-r(.) n(A) < f P(x,. n(dx) < m()
A

and hence T(.) is absolutely continuous with respect to iT(.), with

derivative r(.) (say). Now, E is the Borel field of a separable

metric space, so tht E is generated by some countable family of

subsets B02 B1, Bn .... (DELLACRERIE and MEYER (1978), p. 10-1i).

Letting B represent the a-field generated by B0 B 1  ... ' B

every y c E belongs to a unique atom An(y) c Bn, so that

P(x,B) = f pn(x,y) n(dy) + Ps (x,B) for B c B
B

where p n(x,y) = P(x, An(y))/n(An(y)) (0/0 interpreted as zero) and

P s(x,) is the n-singular component of P(x,-). Let p(.) be the

simple function defined by

pn(.) inf{Pn(x,-): x c A)

and observe that
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pn() - inf P(x, An (-))/ntAn(.)) > tA (-))/t(A n.)) - r (.)x¢ A -

where rn(.) is the i-derivative of T on Bn" Let p(.)

Lim pn(.), p(x,.) - lim Pn(x,-), r(.) - lim r n.). By a classical

differentiation theorem (see DOOB (1953), p. 612), r(.) - r(.)

a.e., and p(x,-) is the i-derivative of P(x,.). Letting

T*(B) f p(y) i(dy)
B

it is clear that T*(E) > T(E) for any feasible T, since

p(-) > r(-). On the other hand, for any x c A,

f p(y) i(dy) = f Lm inf pn(x,y) n(dy) < f 1n Pn(x,y) i(dy)
B B xcA B

< P(x,B)

and thus T* is feasible. The measure T* therefore solves (5.11).1

The proof of Proposition 5.12 constructs the maxi-min optimal

measure T*, given the invariant probability n. However, the con-

struction of T* can often be given in the absence of explicit know-

ledge of i. Suppose, for example, that the measures P(x,.) are all

equivalent to some common measure n, as x ranges over A (two

measures are equivalent if they share the same sets of measures 0).

Then, a trivial adaptation of the proof of Proposition 5.12 shows that

r* is given by
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(5.13) *(B) f lim inf Pn(xy) n(dy)

B x C A

where pn(x,-) is the n-derivative of P(x,.) on Bn

(5.14) EXAMPLE. Let (Un; n > O} be a sequence of independent,

identically distributed real-valued random variables with

a exp(ay) dy , y < 0

P{U n c dy) =

a exp(-y)dy , y > 0

where dy is Lebesgue measure and a = a/(x+l). The process' = x,

Wr+1 = max{W n+U n, 0} is a Markov chain corresponding to the waiting

time process of the M/M/1 queue (see IGLERART (1971)). If A - [O,b],

then (5.13) shows that the Lebesgue derivative of T* is given by

a exp(a(y-b)), 0 < y < ab

r(y) A

a exp(-y), y > ab

We should point out that in actual simulation applications, one would

use the maxi-min optimal measure t* as follows. Letting n

represents the atoms of Bn, put

(5.15) pnCX) = min P(x,Ai)/*(Ai)
Ai C Ai--n

which we note is a decreasing sequence of measurable functions bounded

below by 1. If we denote the T*-derivative of P(x,-) on _n by

Pn(x,.), then
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P(x,B) > f Lim Pn(x,y) T*(dy) lim P n (x) T*(B) > T*(B)
B

so that (,%) c nj where

X(x) = lim pn(x) T*(E), (.) ()/*(E)

The algorithm of Section 4 could then be exploited to obtain a

regenerative sequence. Of course, in many applications, %(.) can be

calculated directly from the densities p(x,y) (the T*-derivative of

P(x,*)) without passing through (5.15), namely via

(5.16) X(x) = inf p(x,y) t*(E)

y

The construction of X(x) via (5.15) is necessary to deal with the

case where one is working with a badly behaved version of p (with a

bad version, (5.16) might lead to X(x) : 0).

6. Passage Times for Harris Chains

In Sections 2 through 5, we have developed simulation methodology

for Harris chains, and investigated some related questions. The

theory considered so far has pertained exclusively to study of

problems associated with simulation output analysis of functions of

the form f(Xn), where {Xn} is the simulated chain and f is a

real-valued E measurable function. Recently, however, the "passage

time" problem has attracted considerable attention in the literature;
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see, for example, IGLEHART and SHEDLER (1980). As we shall see, the

quantities of interest in the passage time setting can not be

expressed in the form f(Xn), and hence we must develop some addi-

tional theory to handle this problem.

To simplify the exposition, we shall consider only a special case

of the general passage time problem. However, the structure to be

imposed here provides enough flexibility so as to cover the large

majority of practical cases of interest. We start by assuming that

(Xn}  is a Harris chain with a-finite invariant measure n. Given

four E-measurable sets Al, A2 , B1 , B2 , assume that:

(6.1) i) Px{Sk < } < 1 for all x, where So = 0, and

Sk+ 1  inf{n > Sk: (Xn-l, X n) A 21

ii) Px{Tk < =} = 1 for all x, where To = SI, and

T = inf{n > Tk: (Xnl, Xn ) c B1 x B2}

iii) Px{SI < TI  S2 < T2 ( S3 < T < .-} 1 for all x.

The passage time problem is concerned with obtaining estimators

associated with the amount of time required for the chain (Xn-l, X )

to make a "passage" from initial configuration A1 x A2  to terminal

configuration B1 x B2. Condition (6.1)(ii) guarantees that the

start times {Sj} and terminal times {Tj) alternate, so that

passage time quantities Rn(f) may be defined via the formula
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T -1n

Rn(f) - f(Xj)
J=S

for f a real-valued E-measurable function.

(6.2) EXAMPLE. Let {6t: t > 0) be a semi-Markov process taking

values in state space I - {0, 1, ..., n). Let P be a stochastic

matrix which describes the evolution of eTn+, where Tn are the

successive state transition times of the process {et}. Also, let

Fi(-) be the distribution of the holding time in state i, or

alternatively, let

Fi(.) - P{Tn+1 - Tn < * XT + .
n

The process (0t} corresponds to a Markov chain {Zn} on

I x (0,-), with the transition kernel

P((i,x), {j} x [0,y}) = PiJ Fj(y);

the process Zn - (Sn,cn) records the sequence of states

visited, together with the sequence of consecutive holding times.

Suppose that P is such that there exist four subsets A,, A2 '

Big B2 on I such that (6.1) is satisfied, with the chain {s n}
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playing the role of (X}, and Al, A 2, Bit B2 replacing Al, A2 , Bi ,

B 2  Then, the chain Zn  (s ,c n ) itself satisfies (6.1), using the

sets Ai - Ai x [0,-), Bi  Bi x (0,M).

Assuming that one requires the time required for (Oti to make

a p~asage from A2  to B2 , gives that et visited Aj

immediately before A2 , and that a visit to BI immediately

precedes a visit to B2  (see (181 for the significance of A1 ,

BI), the quantity of interest is Rn(f), where f(s,c) = c.

The interest in passage times arises from the fact that passage

time qudntities are often important design criteria in development of

networks of queues.

We proceed by first analyzing the chain Yn = (Xn, X n+l)

(6.3) PROPOSITION. The chain {Y,: n > 0) is Harris recurrent,

provided {Xn} is Harris. If {Xn} possesses an invariant

probability, then {Yn) does also.

Proof. Let A, X, and be as in Definition 2.2. Put A = E x A

and note that (2.2)(ii) ensures that P {Yn c A infinitely often} - I

for any i on the product space E 2 , where P is the kernel associ-

ated with (Yn) given by

P((Xlx 2), D1 x D2 ) - D (X2 ) P(x2, D2 )

Of course, for (xI, x 2) C A,
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;M+1((xlx
2), DI x D2)

-P {(x, x +1 ) D1 x D2} >X f s(dx 1) f P(xldx2 )
x2  D D2

- Xk(D1 x D2 )

and hence Yn  satisfies (2.2)(i) through (iii), subst'cuting A, *,

m+l in place of A, 0, m. This suffices to prove Harris recurrence

(see [12], Section 4).

Also, given that n is the unique a-finite invariant measure of

(Xn}, it is siwple to verify that the measure n given by

(6.4) n(D1 x D2) f n(dx1 ) f P(Xl, dx2 )
D1  D2

is both a-finite and invariant for P. A trivial consequence of the

representation (6.3) is that t is a probability provided the same is

true of n. I

Let {Xn} be a Harris chain and let D c E satisfy n(D) > 0,

where n is the invariant measure of (X n. Then, setting To  -1,

T k+- inf(n > Tk: Xn c D)
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we have that P (Tk < s}-I for all x (see (2.3)). Le VIbe
x Le t (V

the "interblock" chain

Onm(T1 1 -,X n+1

taking values in uc* = Ej x D.

(6.5) PROPOSITION. The interblock chain (or, is Harris recur-

rent, provided (Zn} is Harris. If (Is) possesses an invariant

probability, so does (ft.).

Proof. Let nt be the invariant measure of {X I . By (2.3), nt(C) > 0,

implies that

(6.6) P x{X n C infinitely often) - 1 for all x

For F a measurable subset of u;_ Ej x D, let

n*F P{(Xo c D, (X,, ..., Xk) c F, T,- k)

Assuming that it*jF) > 0, choose 8 sufficiently small that

C F ={x C D: P X{ (X1, ... ' Xk) cF; T, k} > 81
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has positive n-measure. Of course, by (6.6) XTn visits CF

infinitely often Px a.s. Let U0 = 0,

Unr+ 1  inf{J > Un+k: Xj c CF}

and observe that the Uj's are a subsequence of the Tk's, so that

Pxk j F for all k > 1}

SP + ) F for 1 < k < n}kx{  I...vk+1

where Vk+1 = inf(n > Uk: Xk c D}. Then, by the strong Markov

property applied at time Un, the above term can be re-expressed as

E{PYJ {(X 1, X I F}; (X ,k+1 . L F , 1 < k < n)

n

< (1-6) Px{(XUk+I, ._ XVk+I ) F, 1 < k < n}

the 1-6 term resulting from the fact that XUn c CF. Repeating this

argument (n-i) more times shows that

P {k d F for all k > 1) < (1-)n
x{k

and hence Pk visits F Px a.s. for all x. This implies that

(on )satisfies (2.3) with ni* playing the role of v, proving Harris
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recurrence. Finally, given that n is an invariant probability for

(Xn), it is trivial to verify that

(6.7) n*(.) = P{X0 c D, (X 1 9 ... , XTI C .

is an invariant probability for {}- I

Returning now to the passage time problem, we can combine

Propositions 6.3 and 6.5 to obtain the following result.

(6.8) THEOREM. Suppose that {X} is a Harris chain. Then, if

{Sk) is defined through (6.1), the chain

Ck (XS k ,' ** XSk

is a Harris chain. Furthermore, if {ZX} possesses an invariant

probability, then so does (Q)"

Because of the alternation condition (6.1)(iii), it follows that

T -I
n

R n(f) f (Xk )k-S
n

can be taken to be a measurable function of the {Yn} process, for

any E-measurable f. Since Rn(f) is a functional of a Harris

chain, one an immediately apply the general theory of Harris chains to
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obtain sufficient conditions under which strong laws and central limit

theorems hold for partial sum processes associated with {g(Rn(f))},

for real-valued Borel measurable g (typical choices of g might be

g(x) - xk). To be precise, it is evident that if n is a

probability, then

n
(6.9) 1 g(Rk(f))/n - Em{g(Rl(f)) }

k-I

Px a.s. for all x c E, provided that the right-hand side of (6.9)

is finite; the identification of the limit in (6.9) follows from

(6.7). If we assume a further moment condition, then the weak regen-

erative embedding of Section 2, together with the CLT of Section 3,

proves that there exists a constant a2  such that

n1/2[ g(k(f)) - E g(RI(f))] -> N(O, a2)

We can also obtain a simple sufficient condition for finiteness

of E. g(Rl(f)), in the case where g(x) = x.

(6.10) PROPOSITION. If (~fl < -, then E111(f)I <

Proof. Let h(Xk-l, 1Xk) - ff(Xk-l) + If(Xk)l and observe that if nt

is the invariant measure of Yn (Xn-l' X ) then by (6.4),
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f h(xlx 2 ) n(dx I , dx 2 ) I E h(Xk_, Xk) - 2ntfI <

so that h is n-integrable. Now, the sequence of start times (Sk}

constitutes the consecutive hitting times of (A1 ,A2) for the Harris

chain Yn" A well-known construction of the invariant measure of a

Harris chain (see [201, p. 32) shows that

Sk+1

n(D) = E ID(Y )}/I(A I x A2)
nJ=S k l

A classical approximation argument then proves that

S k+ 1

(6.11) f h %(dy) - E{ h(Xj- 1 , X)/it(A 1 x A2)

and hence if nifl < -, the right-hand side of (6.11) is finite. But

Sk+1 Sk+ 1

E R (f) < E_{ . If(Xj)I} < E{ 7 h(X Xj)} <
t n 1- J=Sk+l

proving our assertion. I

7. A Nonlinear Storage Model

In this section, we study a discrete time storage model which is a

vector version of a continuous time process studied by qINLAR and

PINSKY (1971), and by HARRISON and RESNICK (1976). We shall prove
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that the model gives rise to a Harris chain possessing an invariant

probability; the argument will illustrate some techniques appiicable

to proving Harris recurrence in applied probability models.

The model that we shall consider concerns a finite family of

interconnected reservoirs. Suppose that Sn - (S n(1), ..., Sn(W))

are the storage levels at time n in each of the X reservoirs.

Over the interval (n, n+11, the I reservoirs receive additional

content, from an external source, in the amount Zn+ I . Given the

storage levels Sn at time n, a decision is made to release

amounts R - (R (1), ..., R (1)) over the time interval (n, n+].
n n n

Assuming that the release rule Rn - (Sn) , the above formulation

leads to a recursion

(7.1) Sn+1 ' Sn + Zn+l - F(S)

We now make the following assumptions on F:

(7.2) i) F is strictly increasing,

ii) s-F(s) is strictly increasing,

iii) F is continuously differentiable,

iv) r(O) - 0.

By strictly increasing, we mean that 8ri /s is positive, where Fi

is the ith component of F.

We introduce a stochastic element into the model by assuming that

{Zn: n > 1} is a sequence of non-negative independent and identically
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distributed random vectors. The following requirements are imposed on

the joint distribution function F(z) of {Zn}:

(7.3) i) EZn < lim r(s),

ii) F has a continuous Lebesgue density component f which

is positive on B, {x: r(a-E) < r(x) < r(a+e)) for

some e > 0, where r(a) > EZn  (inequality here is

componentwise).

As previously mentioned, this model bears close resemblance to

some recently studied continuous-time storage processes; it is also

closely related to the one-variable discrete-time storage model of

BATHER (1962).

(7.4) THEOREM. Under conditions (7.2) and (7.3), {S") is a Harris

chain with invariant probability.

-1
Proof. For n > 0, let A = (s: f(s) < EZ +n} {s: s < I1 (EZ n-)),' __- n -- n

which, by (7.2)(ii) and (7.3)(i), is non-empty and compact for n

sufficiently small. Now, let g(s) = Isq (19. = sum of absolute

values of components) and observe that
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E g(S ) Els + Z -(s)I

= [ E(s(i) + Z i) - ri (s)}
i-i i

= [ s(i) + ( (EZ 1Ci) - r1(s)) < Osu - = - g(s) - x
i-I i-i

for s I A?, where the second equality follows by non-negativity of

s-f(s). Also,

sup Es g(S ) - sup Ds-r(s)g + OEZ nI <
s cA S scA

T) T

by compactness of A., so that by Theorem 6.1, TWEEDIE (1976), the

set A., is uniformly positive. Hence,

(7.5) sup Ea TA <

TI I

where TAT - inf(n > 0: Sn c An). By (7.3)(ii), we can choose Ti

and y < c sufficiently small that A n B -; we will show thatTi Y

there exists n, 6 > 0 such that

(7.6) sup Ps(TB > n < 1-6
scA y

Let o(s) - s - f(s) + F(a-1/2), and observe that D is a strictly

monotone transformation, so that on(s) increases to a - y/2 for

s c A... In fact, e (O) < Dn(s) so that it is possible to

choose an n for which
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fn (s) > a - y/2

uniformly ovet s c A.. Hence, for s c An$

Ps(TB < ( n) > Ps(Sn c B ; ZI  , Zn c B y/2}
Y

- P sr(s n) > r(a - y/2) ; Z1 , ... Zn B y/2}

= Ps{n(s) > a - y/2; Z1 9 ... I Zn B B /2)

- Ps (ZI ..., Zn c By/2I - 6 > 0,

proving (7.6). Relations (7.5) and (7.6) together show that for any

Y > 0,

(7.7) PS{TB < } - 1
Y

for all s. Now, use (7.3)(ii) and note that for y sufficiently

small

(7.8) Ps (S 1 C) - P{Z + s - r(s) c c) > x f dyCnBE/2

for all s c By, where X is the lower bound on the Lebesgue

density of F over BE. Together, (7.7) and (7.8) suffice for

Harris recurrence, in light of (2.2).

The fact that the invariant measure is a probability will follow

as a consequence of A. being compact and uniformly positive.

First, (Sn) is a Harris chain with Feller kernel; i.e., sn + s
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implies P(s",°) -> P(s,°) (this is a consequence of the fact that

(7.1) defines Sn+j as a continuous function of Sn). We may

therefore apply Lemma 5.1 of [24], which shows that A. qualifies

as a positive status set. Application of Proposition 4.3 of [24]

completes the proof of the theorem. I

The theory of Section 4 proves that under conditions (7.2) and

(7.3), (Sn } may be embedded in a regenerative environment. As a

special case, consider the one variable model in which r(s) as for

0 < a < 1. Then, (Sn} is an autoregressive process of order 1

and

(7.9) Sn+ = (1-a) Sn  Zn+ .

Given that F(dz) = f(z)dz, where f is a positive continuous

density, such an autoregressive process may be regarded as

regenerative when appropriately embedded. A natural question to ask

is whether {Sn} can be made regenerative without the embedding.

More precisely, is the process (Sn) strongly regenerative in the

sense that there exist regeneration times that are measurable

functions of the process (Sn} alone? By appealing to Theorem 8.17

of [111, we see that {Sn} can be strongly regenerative only if

there exist sets CI, C2  of positive Lebesgue measure such that

(7.10) P (S c dy} f(y - (1-a)s)dy - cs g(y) dy
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for some function c., g, where (7.10) must hold for all s c C1,

y c C2. Since the factorization (7.10) is not generally valid, we

have proven existence of a chain that can be made regenerative only

via an embedding.

It is also worth pointing out that some sort of density assump-

tion for {Zn} is necessary, in order to obtain Harris recurrence.

In Section 6 of [12], it is shown that the autoregressive process

defined by (7.9) can not be embedded in a weakly regenerative environ-

ment, even in the presence of the condition EZn < =, if {Zn} has

a certain atomic distribution.
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